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Our aim in this paper is to show how a probabilistic interpretation of the
Boltzmann and Landau equations gives a microscopic understanding of these
equations. We firstly associate stochastic jump processes with the Boltzmann
equations we consider. Then we renormalize these equations following asymp-
totics which make prevail the grazing collisions, and prove the convergence of
the associated Boltzmann jump processes to a diffusion process related to the
Landau equation. The convergence is pathwise and also implies a convergence
at the level of the partial differential equations. The best feature of this
approach is the microscopic understanding of the transition between the
Boltzmann and the Landau equations, by an accumulation of very small jumps.
We deduce from this interpretation an approximation result for a solution of the
Landau equation via colliding stochastic particle systems. This result leads to a
Monte-Carlo algorithm for the simulation of solutions by a conservative particle
method which enables to observe the transition from Boltzmann to Landau
equations. Numerical results are given.

KEY WORDS: Soft potential Boltzmann equations without cutoff; Landau
equation with soft potential; nonlinear stochastic differential equations; inter-
acting particle systems; Monte-Carlo algorithm.

1. INTRODUCTION

Our aim in this paper is to show how a probabilistic interpretation of the
Boltzmann and Landau equations gives a microscopic understanding of
these equations.



In the first part of the paper, we consider spatially homogeneous soft
potential Boltzmann equations without angular cutoff for a large class of
initial data, and relate them to jump processes solutions of Poisson-driven
stochastic differential equations. These results extend results due to Tanaka
in the Maxwellian case and for L1-hypotheses on the cross-section (25) and
generalized by Horowitz and Karandikar (18) in the L2-case and by Fournier
and Méléard (11) for non Maxwell molecules in dimension 2.

This probabilistic representation has been proved usefull either to
obtain existence of measure solutions of the Boltzmann equation for a large
class of measure initial data or to prove, at least in dimension two, the exis-
tence of positive smooth solutions to the Boltzmann equation, improving
thus the analytical results (Graham and Méléard, (15) Fournier (9)). It also
allows to get numerical Monte-Carlo methods for Boltzmann equations
without cutoff (Desvillettes et al., (7) Fournier and Méléard (12)).

In this paper we show more specifically that the microscopic stochastic
representation of the Boltzmann equations leads to a natural and intuitive
understanding of the transition to Landau equations, when grazing colli-
sions prevail.

The Fokker–Planck–Landau equation, or Landau equation, is derived
from the Boltzmann (see ref. 20) and is usually considered as an approxi-
mation of homogeneous Boltzmann equations in the limit of grazing colli-
sions. Many authors have been interested in proving rigorously this con-
vergence, in different cases of scaterring cross-sections and initial data.
Firstly Arsen’ev and Buryak (1) proved the convergence of solutions of the
Bolzmann equation towards solutions of the Landau equation under very
restrictive assumptions. Then, Desvillettes (5) gave a mathematical frame-
work for more physical situations, but excluding the main case of Coulomb
potential studied by Degond and Lucquin, (4) for which the Boltzmann
equation is not realistic (see ref. 27) and the Landau equation appears
naturally. More recently, Goudon (13) and Villani (27) proved the convergence
of Boltzmann equations towards the Landau equation. They use analytical
techniques as convergence theorems or spectral analysis, showing a
L1-convergence for a bounded entropy and energy initial condition.
However, these results could be relaxed without the entropy assumption in
a weak-* convergence.

In the grazing collision asymptotics, the cross-section in the Boltzmann
operator is renormalized by a small parameter depending on the nature
of the collisions. In this paper, we consider asymptotics including those
of Degond and Lucquin-Desreux (4) and Desvillettes. (5) We show how the
accumulation of grazing collisions can be interpreted at the level of
the jump processes as an accumulation of small jumps. Then we prove the
convergence in law, in the Skorohod space, of sequences of renormalized
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Boltzmann processes to a diffusion process, called Landau process, which
describes the microscopic random behaviour of the Fokker–Planck–Landau
equation (see ref. 16). We immediately deduce a convergence result at the
level of the partial differential equations for general initial data. Unhappily,
the probabilistic tools oblige us to use a L2-framework, which necessitates
the consideration of potentials c ¥ (−1, 0]. In particular, our theorical
approach does not recover the interesting Coulombian case, even if the
Monte-Carlo algorithm also makes sense in this case.

As in the analytical framework, uniqueness is an open problem for all
the equations we consider. All the convergence results we prove are obtained
by a compactness method which only gives converging subsequences.

The pathwise interpretation of the equations (in the probabilistic
framework) provides a natural approximation by interacting colliding par-
ticle systems of the Fokker–Planck–Landau equations. The collision rate
and the amplitude of jumps of the particles are related to the size of the
system. We prove the convergence of its empirical measures to a weak
solution of the Landau equation, when the size of the system growths. We
deduce from this theorical result a simple simulation algorithm, based upon
particles conserving momentum and kinetic energy.

We finally discuss about numerical results. The main interest of our
approach is to observe in the simulations the transition from the renor-
malized Boltzmann equations to the Landau equation (see Section 6,
Fig. 1).

The paper is organized as follows: in Section 2, we explain the
pathwise interpretation of the Boltzmann equation with soft potential, and
solve the nonlinear Poisson-driven stochastic differential equation. In Sec-
tion 3, we study the convergence in law of the renormalized Boltzmann
processes to a Landau process and deduce the convergence of solutions of
the Boltzmann equations to the ones of the Landau equation when the
grazing collisions prevail. In Section 4, we study the approximating particle
systems. We describe the pathwise Monte-Carlo algorithm in Section 5.
Numerical results are discussed in Section 6.

Notations

– DT will denote the Skorohod space D([0, T], R3) of càdlàg func-
tions from [0, T] into R3. The space DT endowed with the Skorohod
topology is a Polish space.

– CT is the space C([0, T], R3) of continuous functions from [0, T]
into R3 and C2

b(R3) is the space of real bounded functions of class C2 with
bounded derivatives.
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– P(R3) is the set of probability measures on R3 and P2(R3) the
subset of probability measures with a finite second order moment.
Similarly, P(DT) denotes the space of probability measures on DT and
P2(DT) is the subset of probability measures with a finite second order
moment: q ¥ P2(DT) if >x ¥ DT

supt ¥ [0, T] |x(t)|2 q(dx) < ..
– Let A and B be two matrices with same dimensions. The symbol

A:B denotes the real ;i, j AijBij and A t is the transpose matrix of the matrix A.
– K will denote a real positive constant of which the value may

change from line to line.

2. THE BOLTZMANN PROCESS

2.1. The Equation

The Boltzmann equation we consider describes the evolution of the
density f(t, v) of particles with velocity v ¥ R3 at time t in a rarefied
homogeneous gas:

“f
“t

=QB(f, f ), (2.1)

where QB is a quadratic collision kernel preserving momentum and kinetic
energy,

QB(f, f )(t, v)=F
vg ¥ R

3
F

2p

j=0
F

p

h=0
(f(t, vŒ) f(t, v −

g) − f(t, v) f(t, vg))

× B(|v − vg |, h) dh dj dvg (2.2)

with vŒ=v+vg
2 +|v − vg |

2 s and v −

g=v+vg
2 − |v − vg |

2 s, the unit vector s having cola-
titude h and longitude j in the spherical coordinates in which v − vg is the
polar axis. The nonnegative function B is called the cross-section.

We are interested in cases for which the molecules in the gas interact
according to an inverse power law in 1/r s with s \ 2. The physical cross-
sections B(z, h) tend to infinity when h goes to zero, but satisfy
>p

0 |h|2 B(z, h) dh < . for each z. Physically, this explosion near 0 comes
from the accumulation of grazing collisions.

In this general (spatially homogeneous) setting, the Boltzmann equa-
tion is difficult to study. A large literature deals with the non physical
equation with angular cutoff, namely under the assumption >p

0 B(z, h) dh

< .. More recently, the case of Maxwell molecules, for which the cross-
section B(z, h)=b(h) only depends on h, has been studied without the cut-
off assumption. In the Maxwell context, Tanaka (25) was considering the case
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where >p
0 hb(h) dh < ., and Horowitz and Karandikar,(18) Desvillettes, (6)

Fournier, (9) Fournier and Méléard, (12) have worked under the physical
assumption >p

0 h2b(h) dh <+.. In the non Maxwell case, by analytical
methods, Goudon (13) and Villani (27) obtain existence results. With a proba-
bilistic approach, Fournier and Méléard (11) obtain such results in dimension
2 and for cross-sections bounded as velocity functions. We generalize here
this approach in dimension 3 and for unbounded (as velocity field) soft
potential cross-sections of the form

B(z, h)=k(z) b(h), (2.3)

with

k(z)=h(|z|) |z|c,

c ¥ (−1, 0] and h a bounded nonnegative locally Lipschitz continuous
function and b from (0, p] Q R+ such that >p

0 h2b(h) dh < ..

Remark 2.1. The probabilistic tools oblige us to work in a
L2-framework and we are able to deal with moderately soft potentials,
c ¥ (−1, 0], thanks to the usefull estimate: for each c ¥ (−1, 0], for each
z ¥ R3,

|z|2+c [ |z|2+1; |z|2+2c [ |z|2+1. (2.4)

We define the jump amplitude

a(v, vg, h, j)=vŒ − v=
cos h − 1

2
(v − vg)+

sin h

2
C(v − vg, j). (2.5)

where for x ¥ R3, j ¥ [0, 2p),

C(x, j)=cos jI(x)+sin jJ(x) (2.6)

and 1
|x| (x, I(x), J(x)) is an orthonormal basis of R3. One can choose, for

example,

I(x)=˛ |x|

`x2
1+x2

2

( − x2, x1, 0) if x2
1+x2

2 > 0

(x3, 0, 0) if x2
1+x2

2=0

; J(x)=
x
|x|

N I(x)

The main difficulty is that a is not a Lipschitz continuous function on
the variables v and vg. It just satisfies an ‘‘almost’’-Lipschitz property
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(Lipschitz up to a rotation), as proved in ref. 25 or in its ‘‘fine’’ version in
ref. 12. However, this property will be sufficient to obtain existence results.

Lemma 2.2. There exists a measurable function j0: R3 ×R3
W [0, 2p[,

such that for all v, vg, w, wg in R3, h ¥ [0, p], j ¥ [0, 2p],

|a(v, vg, h, j) − a(w, wg, h, j+j0(v − vg, w − wg))| [ 3h(|v − w|+|vg − wg |)

|a(v, vg, h, j)| [ 2 |sin(h/2)| |v − vg |

Equation (2.1) has to be understood in a weak sense, i.e., f is a solu-
tion of the equation if for any test function f, “

“t Of, fP=OQB(f, f ), fP
where O · , ·P denotes the duality bracket between L1 and L. functions.
By a standard integration by parts, we define a solution f as satisfying for
each f ¥ C2

b(R3)

“

“t
F

R
3

f(t, v) f(v) dv=F
R

3 × R
3

F
2p

0
F

p

0
(f(vŒ) − f(v)) B(v − vg, h) dh dj

× f(t, v) dv f(t, vg) dvg.

Since >p
0 hb(h) dh may be infinite, the RHS term may explode. Thus we

have to compensate it, and taking into account the conservation of the
mass, we obtain finally the following definition of probability measure
solutions of (2.1).

Definition 2.3. We say that a probability measure family (Pt)t \ 0 is
a measure-solution of the Boltzmann equation (2.1) if for each f ¥ C2

b(R3)

Of, PtP=Of, P0P+F
t

0
OKf

b, c(v, vg), Ps(dv) Ps(dvg)P ds, (2.7)

where Kf
b, c is defined in the compensated form

Kf
b, c(v, vg)=−bk(v − vg)(v − vg) · Nf(v)

+F
2p

0
F

p

0
(f(v+a(v, vg, h, j)) − f(v) − a(v, vg, h, j) · Nf(v))

× k(v − vg) b(h) dh dj (2.8)

and where

b=p F
p

0
(1 − cos h) b(h) dh. (2.9)

936 Guérin and Méléard



2.2. The Probabilistic Approach

We consider (2.7) as the evolution equation for the marginals of a
Markov process which law is defined by a martingale problem.

Definition 2.4. Let b be a cross section such that >p
0 h2b(h) dh

<+. and Q0 in P2(R3).
We say that Q ¥ P(D(R+, R3)) solves the nonlinear martingale

problem (BMP) starting at Q0 if under Q, the canonical process V satisfies
for any f ¥ C2

b(R3)

f(Vt) − f(V0) − F
t

0
F

R
3

Kf
b, c(Vs, vg) Qs(dvg) ds (2.10)

is a square-integrable martingale and the law of V0 is Q0. Here, the non-
linearity appears through Qs which denotes the marginal of Q at time s.

Remark 2.5. Taking expectations in (2.10), we remark that if Q is a
solution of (BMP), then its time-marginal family (Qt)t \ 0 is a measure-
solution of the Boltzmann equation, in the sense of Definition 2.3.

Our first aim is to prove the existence of a solution to the martingale
problem (2.10) and then to obtain the existence of a measure-solution to
the Boltzmann equation.

Theorem 2.6. Assume that Q0 is a probability measure on R3 with
a fourth order moment, and that B(z, h)=k(z) b(h) is a cross-section
satisfying Hypothesis (2.3). Then

(1) The nonlinear martingale problem (BMP) with initial data Q0

has a solution Q ¥ P2(DT).

(2) Moreover, EQ(supt [ T |Xt |4) <+., where X is the canonical
process on DT.

Remark 2.7. There is no assumption on Q0, except the existence of
a fourth order moment. This allows us in particular to consider degenerate
initial data, as Dirac measures. The point (1) in Theorem 2.6 exhibits in
particular a measure-solution to the Boltzmann equation (2.1) for each
initial data Q0 ¥ P4(R3).

Our method gives no hope to obtain a uniqueness result.

We will prove this theorem using stochastic calculus tools. We
generalize here the results of Tanaka and Horowitz–Karandikar (18) to soft
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potential cases, introducing a specific nonlinear stochastic differential
equation giving a pathwise version of the probabilistic interpretation.

We are looking for a stochastic process belonging to D(R+, R3) and
with a law Q solution of (2.10). It can be given as solution of the nonlinear
stochastic differential equation

Vt=V0 − b F
t

0
F

R
3

k(Vs − z)(Vs − z) Qs(dz) ds

+F
t

0
F

R
3

F
R+

F
p

0
F

2p

0
a(Vs − , z, h, j) 1{x [ k(Vs − − z)}Ñg(dx, dh, dj, dz, ds)

where Ñg the compensated martingale of an inhomogeneous Poisson-point
measure on R+ × [0, p] × [0, 2p] × R3 × R+ with intensity dx b(h) dh dj ×
Qt(dz) dt. The nonlinearity appears through Qs, which is the law of Vs for
each s.

We consider a compensated form of the Poisson-point measure
following Definition 2.3. Using Itô’s formula, we easily remark that the law
Q of a solution V of this stochastic differential equation is a solution of
(2.10) and (Qt)t \ 0 is a solution of the Boltzmann equation. That gives a
pathwise mean-field interacting representation of the Boltzmann process:
the process jumps following a Poisson-point measure which picks inde-
pendent colliding particules having the same law as the process itself. The
jump takes place if x [ k(Vs − − z) and the amplitude of the jump is equal
to a.

Technically, to obtain a more intrinsic representation, we use the
Skorohod representation and describe the behaviour of the colliding parti-
cules on an auxiliary probability space. So we now consider two probability
spaces: the first one is the abstract space (W, F, {Ft}t ¥ [0, T], P) and the
second one is ([0, 1], B([0, 1]), da). In order to avoid any confusion, the
processes on ([0, 1], B([0, 1]), da) will be called a-processes, the expecta-
tion under da will be denoted by Ea, and the laws La.

Definition 2.8. We say that (V, W, N, V0) is a solution of (SDE) if

(i) (Vt) is an adapted càdlàg DT-valued process such that
E(supt ¥ [0, T] |Vt |2) <+.,

(ii) (Wt) is a a-process such that Ea(supt ¥ [0, T] |Wt |2) <+.,

(iii) N(w, dt, da, dx, dh, dj) is a {Ft}-Poisson point measure on
[0, T] × [0, 1] × R+ × [0, p] × [0, 2p] with intensity m(dt, da, dx, dh, dj)
=dt da dx b(h) dh dj and Ñ is its compensated martingale,
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(iv) V0 is a square integrable variable independent of N,

(v) L(V)=La(W),

(vi)

Vt=V0 − b F
t

0
F

1

0
k(Vs − Ws(a))(Vs − Ws(a)) da ds

+F
t

0
F

1

0
F

R+

F
p

0
F

2p

0
a(Vs − , Ws − (a), h, j) 1{x [ k(Vs − − Ws − (a))}

× Ñ(ds, da, dx, dh, dj)

Remark 2.9. Of course, as before, the law of V is then a solution of
(BMP) with initial law Q0=L(V0).

Let us now prove in many steps Theorem 2.6. We obtain the existence
of weak solutions of the martingale problem (BMP) under Hypothesis
(2.3), as limits in law of solutions of regularized equations.

The first step generalizes the result of Fournier and Méléard (11)

obtained in dimension 2. The specific difficulty in dimension 3 is the lack of
Lipschitz continuity of a described in Lemma 2.2. We will prove

Proposition 2.10. Assume that B(z, h)=k̂(z) b(h) with k̂ a non-
negative bounded and locally Lipschitz continuous function, and b

integrating h (hence, no compensation is needed). Assume that V0 is a
fourth-order moment random variable. Then the nonlinear stochastic
differential equation (SDE) which can be rewritten in this case

Vt=V0+F
t

0
F

1

0
F

R+

F
p

0
F

2p

0
a(Vs − , Ws − (a), h, j)

× 1{x [ k̂(Vs − − Ws − (a))}N(ds, da, dx, dh, dj) (2.11)

has a weak solution, and moreover, for every T > 0,

E(sup
t [ T

|Vt |4) <+.. (2.12)

Proof. The proof mixes arguments from ref. 12 (adapted from
Tanaka) to control the lack of Lipschitz regularity of a and from ref. 11
Theorem 3.4. in the non Maxwell case.

Let us assume that the function k̂ is bounded by M. Let us define

â(v, w, h, j, x)=a(v, w, h, j) 1{x [ k̂(v − w)}
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and its cutoff versions

ân(v, w, h, j, x)=â(v N n K (−n), w N n K (−n), h, j, x).

We remark that

F |ân(v, w, h, j, x)| dx [ Mh |v − w| (2.13)

F |ân(v, w, h, j, x) − ân(vŒ, wŒ, h, j+j0(v − w, vŒ − wŒ), x)| dx

[ Kn(|v − vŒ|+|w − wŒ|) (2.14)

Thanks to these properties, we are able to construct, by a sophisticated
Picard iteration mixing results of refs. 11 and 12, a solution of

Vn
t =V0+F

t

0
F

1

0
F

R+

F
p

0
F

2p

0
ân(Vn

s − , Wn
s − (a), h, j, x) N(ds, da, dx, dh, dj)

(2.15)

satisfying moreover that

sup
n

E(sup
s [ t

|Vn
s |4) <+.. (2.16)

This Picard iteration takes into account the specific property (2.14). The
trick is to observe that the image measure of a Poisson point measure with
intensity ds dx da b(h) dh dj by the rotation j W j+j0 is still a Poisson
point measure with the same intensity measure. That is technical and we
refer to refs. 12 or 25 for more details.

Property (2.16) implies that the laws Qn of Vn are uniformly tight on
the path space.

Let us now prove that each limiting point Q of this sequence is solu-
tion of the nonlinear martingale problem associated with (2.11), i.e., that
for (Xt) the canonical process on DT and for f ¥ C1

b(R3), t > 0,

Hf
t =f(Xt) − f(X0) − F

t

0
F

M

0
F

p

0
F

2p

0
(f(Xu+â(Xu, w, h, j, x))

− f(Xu)) Qu(dw) b(h) dh dj dx du
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is a Q-martingale, knowing that the similar quantity Hn, f
t , with ân instead

of â and Qn instead of Q, is a Qn-martingale. The only new difficulty in
dimension 3 consists in proving that the function, for s [ t,

K(X, Y)=F
t

s
F

M

0
F

p

0
F

2p

0
(f(Xu+â(Xu, Yu, h, j, x)) − f(Xu)) b(h) dh dj dx du

is continuous on DT × DT, although a is not Lipschitz continuous. Using
the translation invariance of the Lebesgue measure dj and the periodicity
of â in the variable j, we write

|K(X, Y) − K(XŒ, YŒ)|

[ M F
t

s
F

p

0
F

2p

0
(|f(Xu) − f(X −

u)|+|f(Xu+â(Xu, Yu, h, j))

− f(X −

u+â(X −

u, Y −

u, h, j+j0(Xu − Yu, X −

u − Y −

u)))|) b(h) dh dj du

and thanks to Lemma 2.2, we see that the RHS term tends to 0 when the
uniform distance between (X, Y) and (XŒ, YŒ) tends to 0.

A standard proof allows us to conclude that Q is solution of the non-
linear martingale problem (BMP) associated with (2.11). Moreover, using
a representation theorem, we can exhibit an enlarged probability space,
on which the canonical process is solution of (2.11) (a similar argument is
more detailed in the end of the proof of Theorem 2.6). The property (2.12)
follows easily from (2.16). L

Let us now prove Theorem 2.6.

Proof. In order to apply Proposition 2.10, we consider some cutoff
of the cross-section in both variables.

We introduce the following approximating model:
Let l, k ¥ Ng and define

bl(h)=b(h) 1|h| \
1
l
; kk(z)=h(|z|)(|z|c N k), -z ¥ R3.

Each function kk is locally Lipschitz continuous and is bounded by kH,
where H is a bound of the function h. Thanks to Proposition 2.10 and for
each (k, l), there exists a weak solution to the nonlinear stochastic differ-
ential equation (SDEkl):

Vk, l
t =V0+F

t

0
F

1

0
F

R+

F
p

0
F

2p

0
a(Vk, l

s − , Wk, l
s − (a), h, j)

× 1{x [ kk(V k, l
s − − W k, l

s − (a))}Nk, l(ds, da, dx, dh, dj) (2.17)

From Boltzmann to Landau Processes 941



where Nk, l is a point Poisson measure with intensity ds da dx bl(h) dh dj

on [0, T] × [0, 1] × [0, kH] × [0, p] × [0, 2p]. So the associated nonlinear
martingale problem (BMPk, l) has a solution Pk, l. The aim is now to prove
that the sequence (Pk, l) of probability measures on the path space DT is
uniformly tight and that each limit point is solution of the initial nonlinear
martingale problem (BMP).

Since the limit case has sense only in a compensated form, we write
each equation (2.17) in its compensated form:

Vk, l
t =V0 − bl F

t

0
F

1

0
kk(Vk, l

s − Wk, l
s (a))(Vk, l

s − Wk, l
s (a)) da ds

+F
t

0
F

1

0
F

R+

F
p

0
F

2p

0
a(Vk, l

s − , Wk, l
s − (a), h, j) 1{x [ kk(V k, l

s − − W k, l
s − (a))}

× Ñk, l(ds, da, dx, dh, dj)

where

bl=p F
p

0
(1 − cos h) bl(h) dh.

Lemma 2.11

sup
k, l

E(sup
t [ T

|Vk, l
t |4) <+.. (2.18)

Proof of Lemma 2.11. Thanks to (2.4), we obtain easily that

E(sup
s [ t

|Vk, l
s |4) [ K 1E(|V0 |4)+F

t

0
F

1

0
E(sup

u [ s
|Vk, l

u − Wk, l
u (a)|4+1) da ds2

[ K 11+F
t

0
E(sup

u [ s
|Vk, l

u |4) ds2 (2.19)

and the constant number K does not depend on k and l. By Proposition 2.10,
E(sups [ T |Vk, l

s |4) is finite for each k, l and the proof is obtained by
Gronwall’s lemma. L

It is thus classical to show that the Aldous criterion is satisfied.
Hence the sequence (Pk, l) is tight.
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Let us now identify each limit point of (Pk, l). Let Q be a limit value of
this sequence. We consider the compensated martingale problems. Let (Xt)t

be the canonical process on DT and for f ¥ C2
b(R3), t > 0, we set

Hf
t =f(Xt) − f(X0)+b F

t

0
F

w ¥ R
2

Nf(Xu) · (Xu − w) k(Xu − w) Qu(dw) du

− F
t

0
F

p

0
F

2p

0
F

R
3

(f(Xu+a(Xu, w, h, j, x)) − f(Xu)

− a(Xu, w, h, j, x)(Xu − w) · Nf(Xu)) k(Xu − w) Qu(dw) b(h) dh dj du

and Hk, l, f
t denotes a similar quantity with kk instead of k, bl instead of b,

bl instead of b, and Pk, l
u instead of Qu. The probability measure Q will be a

solution of the nonlinear martingale problem (BMP) with initial law Q0 if
it satisfies for each 0 [ s1 < · · · < sp < s < t [ T, each G ¥ Cb((R3)p),

O(Hf
t − Hf

s ) G(Xs1
,..., Xsp

), QP=0. (2.20)

Since Pk, l is a solution of (BMPk, l), we already know that

O(Hk, l, f
t − Hk, l, f

s ) G(Xs1
,..., Xsp

), Pk, lP=0.

Since the sequence (Pk, l) satisfies the Aldous criterion, the law Q is
the law of a quasi-càg process (cf. ref. 19, p. 321). Then the mapping
F: x W (f(xt) − f(xs)) G(xs1

,..., xsp
) is Q-a.e. continuous and bounded from

DT to R. Thus OF, Pk, lP tends to OF, QP as k, l tend to infinity.
Now, let us successively prove that

T1=71F
t

s
F

p

0
F

2p

0
F

R
3

(f(Xu+a(Xu, w, h, j)) − f(Xu) − a(Xu, w, h, j) · Nf(Xu))

× (k(Xu − w) − kk(Xu − w)) Pk, l
u (dw) bl(h) dh dj du2 G(Xs1

,..., Xsp
), Pk, l8,

T2=71F
t

s
F

p

0
F

2p

0
F

R
3

(f(Xu+a(Xu, w, h, j)) − f(Xu) − a(Xu, w, h, j) · Nf(Xu))

× k(Xu − w)(bl(h) − b(h)) Pk, l
u (dw) dh dj du2 G(Xs1

,..., Xsp
), Pk, l8 ,

T3=7G(Xs1
,..., Xsp

) F
t

s
F

R
3

Kf
b, c(Xu, Yu), Pk, l(dX) é Pk, l(dY)8

−7G(Xs1
,..., Xsp

) F
t

s
F

R
3

Kf
b, c(Xu, Yu), Q(dX) é Q(dY)8 ,
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and the term T4 similar to T1 corresponding to the drift term, tend to 0 as
k, l tend to infinity.

Term T1:

|T1 | [ K F
p

0
h2bl(h) dh 7F

t

s
F

R
3

|Xu − w|2 (|Xu − w|c − (|Xu − w|c) N k)

× Pk, l
u (dw) du, Pk, l8

[ K 7F
t

s
F

R
3

|Xu − w|2+c 1{|Xu − w|c
\ k}Pk, l

u (dw) du, Pk, l8

[ K 7F
t

s
F

R
3

|Xu − w|2+c 1{|Xu − w| [ (k)
1
c }Pk, l

u (dw) du, Pk, l8

[ K(k)
2+c

c

and T1 tends to zero when k tends to infinity, uniformly in l since
>p

0 h2bl(h) dh [ >p
0 h2b(h) dh <+., and since 2+c

c < 0.

Term T4: By a similar study with the drift term, we obtain

|T4 | [ K 7F
t

s
F

R
3

|Xu − w| (|Xu − w|c − (|Xu − w|c) N k) Pk, l
u (dw) du, Pk, l8

[ K(k)
1+c

c

and T4 tends to zero when k tends to infinity, since c ¥ (−1, 0].

Term T2:

|T2 | [ K F
p

0
h2 |bl(h) − b(h)| dh 7F

t

s
F

R
3

(|Xu − w|2+c) Pk, l
u (dw) du, Pk, l8

[ K(sup
k, l

EP k, l(sup
u [ T

|Xu |2)+1) F
p

−p

h2 |bl(h) − b(h)| dh

which tends to 0 as l tends to infinity, uniformly in k thanks to Lemma 2.11.

Term T3: Let us define the function F(x, y) on DT × DT by F(x, y)
=> t

s Kf
b, c(xu, yu) du. The function F is Q é Q-a.e. continuous by a similar
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argument as in the proof of Proposition 2.10 and is not bounded. Estimates
(2.4) imply that

|F(x, y)| [ K F
p

0
h2b(h) dh( sup

s [ u [ t
(|xu − yu |2+c+|xu − yu |1+c))

[ K(sup
u [ T

|xu |2+sup
u [ T

|yu |2+1).

Now, the measure Pk, l é Pk, l converges obviously to Q é Q. Then, for
each fixed real positive number C, the sequence OF N C, Pk, l é Pk, lP con-
verges to OF N C, Q é QP. We remark that

|F(x, y)| 1{|F(x, y)| \ C}

[ K(sup
u [ T

|x(u)|2+sup
u [ T

|y(u)|2+1) 1{supu [ T |x(u)|2+supu [ T |y(u)|2
\ C/K − 1}

[ K(sup
u [ T

|x(u)|2+sup
u [ T

|y(u)|2+1)

× (1{supu [ T |x(u)|2
\ C/2K − 1/2}+1{supu [ T |y(u)|2

\ C/2K − 1/2})

and it is easy to prove thanks to Lemma 2.11 that

sup
k, l

O(sup
u [ T

|x(u)|2+sup
u [ T

|y(u)|2+1)

× (1{supu [ T |x(u)|2
\ C/2K − 1/2}+1{supu [ T |y(u)|2

\ C/2K − 1/2}), Pk, l é Pk, lP

tends to 0 as C tends to infinity.
We have thus proved that each limit law of the sequence (Pk, l) is

solution of the martingale problem (BMP). Since such limits exist thanks
to the Aldous criterion, we deduce obviously from this approach the exis-
tence of at least one solution to (BMP).

Let us now show that each solution Q of (BMP) is a weak solution of
(SDE).

The canonical process X is a semimartingale under Q. Then a com-
parison between the Itô formula and the martingale problem proves that X
is a pure jump process and that its Lévy measure is the image measure
of the measure m on [0, T] × [0, 1] × R+ × [0, p] × [0, 2p] by the mapping
(s, a, x, h, j) W a(Xs − , Ws − (a), h, j) 1{x [ k(Xs − − Ws − (a))}. Then by a represen-
tation theorem for point measures, (8) there exist on an enlarged probability
space a square integrable variable V0 and a Poisson-point measure N with
intensity m such that (X, W, N, V0) is a solution of (SDE). L
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3. CONVERGENCE OF RENORMALIZED BOLTZMANN PROCESSES

TOWARDS A LANDAU PROCESS

3.1. A Probabilistic Interpretation of the Landau Equation

The Landau equation, also called the Fokker–Planck–Landau equa-
tion, describes the collisions of particles in a plasma and is obtained as
limit of Boltzmann equations when the collisions become grazing. In the
spatially homogeneous case, it writes in R3:

“f
“t

=QL(f, f) (3.1)

with

QL(f, f)(t, v)

=
1
2

C
3

i, j=1

“

“vi

3F
R

3
dvg Aij(v − vg ) 5f(t, vg )

“f
“vj

(t, v) − f(t, v)
“f
“v*j

(t, vg )64

where f(t, v) \ 0 is the density of particles having velocity v ¥ R3 at time
t ¥ R+, and (Aij(z))1 [ i, j [ 3 is a nonnegative symmetric matrix depending on
the interaction between the particles, of the form

A(z)=L |z|c+2 P(z) h(|z|)

=L |z|c h(|z|) r
z2

2+z2
3 − z1z2 − z1z3

− z1z2 z2
1+z2

3 − z2z3

− z1z3 − z2z3 z2
1+z2

2

s (3.2)

where P(z) is the orthogonal projection on (z) + , L is a positive constant
and h is a nonnegative locally Lipschitz continuous bounded function.

By integration by parts, see ref. 27, a weak formulation of the equa-
tion (3.1) writes, at least formally, for any test function f ¥ C2

b(R3),

d
dt

F f(v) f(t, v) dv

=
1
4

C
3

i, j=1
F

R
3 × R

3
dv dvg f(t, v) f(t, vg ) Aij(v − vg )(“

2
ijf(v)+“

2
ijf(vg ))

+
1
2

C
3

i=1
F

R
3 × R

3
dv dvg f(t, v) f(t, vg ) bi(v − vg )(“if(v) − “if(vg ))

(3.3)

where bi(z)=;3
j=1 “jAij(z)=−2Lh(|z|) |z|c zi.

946 Guérin and Méléard



As for the Boltzmann equation, the equation (3.3) conserves the mass,
thus we give a definition of probability-measure solutions of the Landau
equation:

Definition 3.1. Let P0 belong to P2(R3). A probability measure
solution of the Landau equation (3.4) with initial data P0 is a probability
measure family (Pt)t \ 0 on R3 satisfying

Of, PtP=Of, P0P+F
t

o
OLf(v, vg ), Ps( dv) Ps( dvg )P ds (3.4)

for any function f ¥ C2
b(R3) where Lf is the Landau kernel defined on

R3 × R3 by:

Lf(v, vg )=
1
2

C
3

i, j=1
“

2
ijf(v) Aij(v − vg )+ C

3

i=1
“if(v) bi(v − vg )

=
1
2

Jf(v): A(v − vg )+b(v − vg ) · Nf(v)

with Jf=(“
2
ijf)1 [ i, j [ 3.

We now consider the martingale problem associated with the Landau
equation and defined as follows.

Definition 3.2. Let P0 belong to P2(R3).
Let (Ys)s \ 0 be the canonical process on CT. A probability measure

P ¥ P(CT) is a solution of the martingale problem (LMP) with initial data
P0 if the law of Y0 is P0 and if for any f ¥ C2(R3),

f(Yt) − f(Y0) − F
t

0
F

R
3

Lf(Ys, vg ) Ps( dvg ) ds

is a P-martingale, where Ps=P p Y−1
s .

Remark 3.3. The time-marginal family of a solution of the martin-
gale problem (LMP) is a measure-solution of the Fokker–Planck–Landau
equation.

Guérin already built in ref. 16, by a direct probabilistic approach,
a Landau process solution of a nonlinear stochastic differential equation
driven by a white noise and deduced the existence of a measure-solution
of the Landau equation for any dimension \ 2 and for c ¥ ( − 1, 0]. We
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obtain here a new proof of the existence of a solution to the Landau
process (and then of a solution to the Landau equation) as limit of
Boltzmann processes.

3.2. Asymptotic of Boltzmann Processes Towards a Landau Process

We are now interested in stating the convergence in law of Boltzmann
processes with ‘‘moderately soft potentials,’’ obtained in Section 2, towards
a Landau process, when the collisions become grazing. With this aim in
view, we consider cross-sections b e depending on the grazing collision
parameter e, as in Villani. (27) The function b e from [0, p] to R+ satisfies

-h0 > 0 b e(h) ||0
e Q 0

0 uniformly on h \ h0 (3.5)

L e=p F
p

0
sin2(h/2) b e(h) dh ||0

e Q 0
L > 0 (3.6)

Let us remark that these hypotheses contain the case b e(h)= 1
|log e| ×

cos(h/2)
sin3(h/2)

Ih \ e introduced by Degond and Lucquin-Desreux (4) for a Coulomb
potential (c=−3) and b e(h)= 1

e3 b( h
e ) introduced by Desvillettes (5) for non

Coulomb potentials.
Let us notice that

Lemma 3.4

(1) >p
0 b e(h) dh ||0

e Q 0
+.,

(2) For k \ 3,

F
p

0
sink(h/2) b e(h) dh ||0

e Q 0
0.

The proof is left to the reader.
For each e > 0, for c ¥ ( − 1, 0], we define the Boltzmann kernel Kf

b
e, c

on R3 × R3, as in (2.8), by

Kf
b

e, c(v, vg )=−b ek(v − vg)(v − vg) · Nf(v)+F
2p

0
F

p

0
(f(v+a(v, vg, h, j))

− f(v) − a(v, vg, h, j) · Nf(v)) k(v − vg) b e(h) dh dj (3.7)

with b e=p >p
0 (1 − cos h) b e(h) dh.

We notice that the Boltzmann kernels converge towards the Landau
kernel when e Q 0, for any v, vg ¥ R3 and f ¥ C2

b(R3) (for more details, see
the convergence of the term E1 in Section 3.4).
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We denote by (BeMP) the martingale problem associated with the
Boltzmann equation defined as in Definition 2.4 replacing Kf

b, c with Kf
b

e, c.
In the previous section, we have proved the existence of a solution Q e of
(B eMP). We are now interested in the asymptotic behaviour of the
sequence (Qe)e > 0 when e tends to 0.

We state the following main theorem.

Theorem 3.5. Consider a bounded locally Lipschitz continuous
nonnegative function h, c ¥ ( − 1, 0], b e satisfying (3.5) and (3.6) and Q0

a finite fourth-order moment probability measure. Let Q e ¥ P(DT) be a
solution of the nonlinear martingale problem (BeMP) with kernel Kb

e, c

defined by (3.7) and initial data Q0.
Then the sequence (Q e)e > 0 is tight when e tends to 0, and any of its

subsequences converges towards a solution P ¥ P(CT) of the nonlinear
martingale problem (LMP), associated with the Landau equation (3.4)
having diffusion matrix defined by (3.2), with initial law Q0.

Remark 3.6. When c=0 and under some regularity assumptions
on h, Guérin has proved in ref. 17, Corollary 7 the uniqueness of a solution
P to the martingale problem (LMP). Then, in this case, the sequence
(Q e)e > 0 converges towards this unique solution P.

Let us notice that Villani (27) and Goudon (13) proved the existence of
weak function solutions of the Landau equation for soft potentials using
the convergence of the solutions of the Boltzmann equation towards the
solutions of the Landau equation. The interest of our approach is the
understanding of this convergence at the microscopic level of processes.
When e decreases, the Boltzmann processes jump more and more often
with smaller jumps, and then finally converge to a (continuous) diffusion
process. Moreover, our convergence result is true for general (even degen-
erate as Dirac measures) initial data and leads naturally to particle
approximations.

3.3. C-Tightness of the Sequence (Q e)e>0

We assume that Q0 has a finite fourth-order moment.
Let Q e be a solution of the martingale problem (B eMP) obtained in

Theorem 2.6 and X the canonical process on DT. Thanks to the point 2) of
Theorem 2.6, for any e > 0, the probability Q e satisfies EQe(sup0 [ t [ T |Xt |4)
[ K e with K e a positive constant depending on e only through >p

−p sin4(h/2)
× b e(h) dh, >p

−p sin2(h/2) b e(h) dh and b e according to Lemma 2.2. Using
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Lemma 3.4 and (3.6), we notice that the sequence (Ke)e > 0 converges as e

tends to 0. Then there exists K > 0 such that

sup
e > 0

EQe( sup
0 [ t [ T

|Xt |4) [ K (3.8)

Thanks to the Aldous criterion, we deduce, with similar arguments as in
Section 2, that the sequence (Qe)e > 0 is tight in P(DT), and then each limit-
ing point P of (Qe)e > 0 belongs to P(DT).

We now prove that the sequence (Qe)e > 0 is moreover C-tight, in the
sense of Jacod and Shiryaev, (19) p. 315, and then P will belong to P(CT).

As the sequence (Q e)e > 0 is tight and according to ref. 19, Proposi-
tion 3.26 (iii), we just have to prove that for any g > 0, for DXt=Xt − Xt −,

lim
e Q 0

Q e(sup
t [ T

|DXt | > g)=0.

We use the stochastic differential equation (SDE) introduced in Sec-
tion 2.2. Let V e be a process with distribution Q e such that

V e
t =V0 − b e F

t

0
F

1

0
k(V e

s − W e
s(a))(Ve

s − W e
s(a)) da ds

+F
t

0
F

1

0
F

R+

F
p

0
F

2p

0
a(Ve

s − , W e
s − (a), h, j) 1{x [ k(V e

s − − W e
s − (a))}

× Ñ e(ds, da, dx, dh, dj)

with La(We)=L(V e)=Qe and Ñ e(ds, da, dx, dh, dj) is the compensated
martingale of a Poisson measure with intensity m e( dt, da, dx, dh, dj)=
dt da dx b e(h) dh dj.

Then, by Tchebychev and Burkholder–Davis–Gundy inequalities for
jump semimartingales and Lemma 2.2,

Q e(sup
t [ T

|DXt | > g)

[
1
g4 E(sup

t [ T
|DV e

t |
4) [

1
g4 E 1 C

t [ T
|DV e

t |
42

[
1
g4 E 1F

T

0
F

1

0
F

p

0
F

2p

0
|a(Ve

s − , W e
s − (a), h, j)|4 k(V e

s − − We
s − (a))

× b e(h) dh dj da ds2

[
K
g4
1F

T

0
F

1

0
E(|V e

u − − W e
u − (a)|c+4) da du2 F

p

0
|sin(h/2)|4 b e(h) dh
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with K independent of e. Thanks to estimates (2.4) and (3.8), we obtain

Q e(sup
t [ T

|DXt | > g) [
KT
g4 F

p

0
|sin(h/2)|4 b e(h) dh

As >p
0 |sin(h/2)|4 b e(h) dh tends to 0 as e tends to 0, the sequence (Qe)e > 0 is

C-tight.

3.4. Identification of the Limit Point Values P

Let P be a limiting value of the sequence (Qe). Then P is the limit of
a subsequence (Q e) that we will still denote by (Qe) for simplicity. We
wish to prove that P is a solution of the martingale problem (LMP). Let
f ¥ C2

b(R3). We define the two following processes on DT

M e
t =f(Xt) − f(X0) − F

t

0
F

R
3

Kf
b

e, c(Xs, vg ) Q e
s( dvg ) ds (3.9)

Mt=f(Xt) − f(X0) − F
t

0
F

R
3

Lf(Xs, vg ) Ps( dvg ) ds (3.10)

The probability measure P will be a solution of the nonlinear martin-
gale problem (LMP) with initial law Q0 if it satisfies, for any 0 [ s1

< · · · < sp < s < t [ T and G ¥ Cb((R3)p),

O(Mt − Ms) G(Xs1
,..., Xsp

), PP=0

However, Q e is a solution of (B eMP), then, for any 0 [ s1 < · · · <
sp < s < t [ T and G ¥ Cb((R3)p),

O(Me
t − M e

s) G(Xs1
,..., Xsp

), Q eP=0

Thus, we want to state the following convergence

EQe((Me
t − Me

s) G(Xs1
,..., Xsp

)) ||0?
e Q 0

EP((Mt − Ms) G(Xs1
,..., Xsp

))

1. Since (Q e) is C-tight, the distribution P charges only the set CT,
then the mapping F: x W (f(xt) − f(xs)) G(xs1

,..., xsp
) is P-continuous and

bounded from DT to R. Thus OF, Q eP tends to OF, PP as e tends to zero.
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2. We now study the convergence of the term

EQe 13F
t

s
F

R
3

Kf
b

e, c(Xu, vg ) Q e
u( dvg ) du4 G(Xs1

,..., Xsp
)2 to

EP
13F

t

s
F

R
3

Lf(Xu, vg ) Pu( dvg ) du4 G(Xs1
,..., Xsp

)2 .

If we denote by (X, Y) the canonical process on DT × DT, we can
write

E1+E2=EQe 13F
t

s
OKf

b
e, c(Xu, vg ), Q e

u( dvg )P du4 G(Xs1
,..., Xsp

)2

− EP
13F

t

s
OLf(Xu, vg ), Pu( dvg )P du4 G(Xs1

,..., Xsp
)2

with

E1=EQe é Qe 13F
t

s
(Kf

b
e, c(Xu, Yu) − Lf(Xu, Yu)) du4 G(Xs1

,..., Xsp
)2

E2=EQe é Qe 13F
t

s
Lf(Xu, Yu) du4 G(Xs1

,..., Xsp
)2

− EP é P
13F

t

s
Lf(Xu, Yu) du4 G(Xs1

,..., Xsp
)2

(a) Study of E1

|E1 | [ KEQe é Qe 1F
t

s
|Kf

b
e, c(Xu, Yu) − Lf(Xu, Yu)| du2 (3.11)

The Taylor development of f writes

f(v+u)=f(v)+u · Nf(v)+1
2 u t · Jf(v) · u+O(|u|3)

We notice that u t · Jf(v) · u=Jf(v): u · u t. Then we divide the expectation of
the right term in (3.11) in three parts:

EQe é Qe 1F
t

s
|Kf

b
e, c(Xu, Yu) − Lf(Xu, Yu)| du2 [ E11+E12+E13
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with

E11=K(| − 2L+b e|) EQe é Qe 1F
t

s
|k(Xu − Yu)(Xu − Yu) · Nf(Xu)| du2

E12=KEQe é Qe 1F
t

s
(k(Xu − Yu)) :1 Jf(Xu): L|Xu − Yu |2 P(Xu − Yu)

− F
2p

0
F

p

0
a(Xu, Yu, h, j) · a t(Xu, Yu, h, j) b e(h) dh dj2: du2

E13=KEQe é Qe 1F
t

s
k(Xu − Yu)1F

2p

0
F

p

0
|a(Xu, Yu, h, j)|3 b e(h) dh dj2 du2

• Using estimates (2.4) and thanks to (3.8), we get

E11 [ K |− 2L+b e|

As b e
||0
e Q 0

2L, E11 converges towards 0 as e tends to 0.
• Let us now study E12. After some computations, we prove that

F
2p

0
a(Xu, Yu, h, j) · a t(Xu, Yu, h, j) dj

=
p

4
[P(Xu − Yu) sin2 h+2(I − P(Xu − Yu))(cos h − 1)2] |Xu − Yu |2

Then

F
2p

0
F

p

0
a(Xu, Yu, h, j) · a t(Xu, Yu, h, j) b e(h) dh dj

||0
e Q 0

LP(Xu − Yu) |Xu − Yu |2

Thanks to (3.8), we conclude that E12 converges towards 0 as e tends
to 0.

• Using similar arguments and Lemma 2.2, we prove the same con-
vergence for E13.

Finally, we have proved that E1 ||0e Q 0
0.

(b) Study of E2

The functions fA
ij : DT × DT Q R, (x, y) W G(Xs1

,..., Xsp
) > t

s Aij(xu − yu)
× “ijf(xu) du and fb

i : DT × DT Q R, (x, y) W G(Xs1
,..., Xsp

) > t
s bi(xu − yu) ×

“if(xu) du are continuous functions (c ¥ ( − 1, 0]), but not necessarily
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bounded. Nevertheless, using similar arguments as in the proof of Theorem
2.6 in Section 2, we obtain E2 ||0e Q 0

0.

Conclusion. For any (t, s, s1,..., sp) ¥ (R+)p+2, with 0 [ s1 [ · · · [

sp [ s < t, we have proved that

EQe((Mt − Ms) G(Xs1
,..., Xsp

)) ||0n Q .
EP((Mt − Ms) G(Xs1

,..., Xsp
))

which implies that

EP((Mt − Ms) G(Xs1
,..., Xsp

))=0

So, (Mt)t \ 0 is a P-martingale and P satisfies the martingale problem
(LMP).

4. A STOCHASTIC PARTICLE APPROXIMATION

Our aim here is the construction of some simulable stochastic colliding
particle systems converging in a certain sense to the law of a Landau
process. More precisely we consider cutoff cross-sections (to obtain simul-
able systems) depending on a grazing collision parameter e. We define
the interacting particle systems by a Monte-Carlo approach, consisting in
replacing the nonlinearity with the empirical measure of the system. These
particle systems will conserve the momentum and kinetic energy. For a
fixed e, it has already been proved that when the parameter of the cutoff
and the size of the system tend to infinity, the empirical measures of the
system tend to the law of a Boltzmann process (see, for example, ref. 12).
The novelty here is that this convergence is uniform in the parameter e.
If moreover e tends to 0, we observe the transition from Boltzmann to
Landau equations on the particle system. This result will be exploited in the
last section to construct an efficient Monte-Carlo algorithm allowing to see
this transition.

We consider the sequence of cutoff cross-sections

Bk, e(z, h)=kk(z) b e(h) (4.1)

where kk(z)=h(|z|)(|z|c N k), h is a locally Lipschitz function bounded
by H, c ¥ (−1, 0], e a parameter tending to 0, b e is a L1([0, p])-function
satisfying (3.5) and (3.6), k is a positive integer.

In order to define the interacting systems, we will ‘‘replace’’ the
nonlinearity in (2.11) with the empirical measure of the system. Hence we
introduce a family of independent Poisson-point measures (Ne, ij)1 [ i < j [ n

on [0, p] × [0, 2p] × [0, kH] × [0, T] with intensities 1
n − 1 b e(h) dh dj dx dt.
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For i > j, we set Ne, ij=Ne, ji (we thus choose a binary mean-field interaction,
close to the physical interpretation). We define the process (Vke, in)1 [ i [ n

solution of the following stochastic differential system:

Vke, in
t =V i

0+ C
n

j ] i, j=1
F

t

0
F

kH

0
F

2p

0
F

2p

0
a(Vke, in

s − , Vke, jn
s − , h, j)

× 1{x [ kk(V ke, in
s − − V ke, jn

s − )}N e, ij(dh, dj, dx, ds). (4.2)

We construct it easily, working recursively on each interjump interval of
the point process (N e, ij)1 [ i, j [ n. The equations are not compensated since
for a fixed e, the function b e belongs to L1([0, p]). The system conserves
momentum and kinetic energy and is a (R3)n-valued pure-jump Markov
process with the generator defined for f ¥ Cb((R3)n) by

1
n − 1

C
1 [ i, j [ n

F
2p

0
F

p

0
F

kH

0

1
2

(f(vn+ei · a(vi, vj, h, j) 1{x [ kk(vi − vj)}

+ej · a(vj, vi, h, j) 1{x [ kk(vi − vj)}) − f(vn)) dx b e(h) dh dj. (4.3)

Here vn=(v1,..., vn) denotes the generic point of (R3)n and ei: h ¥ R3
W

ei · h=(0,..., 0, h, 0,..., 0) ¥ (R3)n with h at the i th place.
Let us denote by

mke, n=
1
n

C
n

i=1
dV ke, in

the empirical measure of this system and by pke, n its law, which is a proba-
bility measure on P(D([0, T], R3)).

Theorem 4.1. Assume that Q0 ¥ P4(R3). Let (V i
0)i \ 1 be indepen-

dent Q0-distributed random variables. Then the sequence (pke, n)k, e, n is uni-
formly tight for the weak convergence and any limit point charges only
probability measures which are solutions of (LMP). Thus any limit point
(for the convergence in law) of the sequence (mke, n) is a solution of (LMP).

Proof. To prove this theorem, we will show

(1) the tightness of (pke, n)k, e, n in P(P(D([0, T], R3))),

(2) the identification of the limiting values of (pke, n)k, e, n as solutions
of the nonlinear martingale problem (LMP).
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One knows (cf. ref. 23) that the tightness of (pke, n)k, e, n is equivalent
to the tightness of the laws of the semimartingales Vke, 1n belonging to
P(D([0, T], R3)). This tightness is due to

sup
k, e, n

E(sup
t [ T

|Vke, 1n
t |4) <+.. (4.4)

This moment condition is obtained by a good use of Burkholder–Davis–
Gundy’s and Doob’s inequalities for (4.2).

Let us now prove that each limiting value of (pke, n) is a solution of the
nonlinear martingale problem (LMP). Consider one of them, denoted by
p. ¥ P(P(D([0, T], R3))). It is the limiting point of a subsequence we still
denote by (pke, n).

We define, for f ¥ C1
b(R3), 0 [ s1,..., sp [ s < t, G ¥ Cb((R3)p), Q ¥

P(DT) and for X the canonical process on D([0, T], R3), the quantity

F(Q)=7G(Xs1
,..., Xsp

)1f(Xt) − f(Xs) − F
t

s
F

R
3

Lf(Xu, vg), Qu(dvg) du2 , Q8 .

(4.5)

Our aim is to prove that O|F|, p.P=0.
The mapping F is not continuous since the projections are not con-

tinuous for the Skorohod topology. However, for any Q ¥ P(DT), the
mapping X W Xt is Q-almost surely continuous for all t outside of an
at most countable set DQ, and then F is continuous at the point Q if
s, t, s1,..., sp are not in DQ. Here we use the continuity and the bounded-
ness of f, G and also the continuity of (q, v) W >R

3 Lf(v, w) q(dw) on
P(D([0, T], R3)) × R3. Thus, if s, t, s1,..., sp are not in DQ, F is p.-a.s.
continuous. Then,

OF2, p.P=lim
k, e, n

OF2, pke, nP

But O|F|, pke, nP [ O|Fke|, pke, nP+O|F − Fke|, pke, nP where

Fke(Q)=7G(Xs1
,..., Xsp

)

×1f(Xt) − f(Xs) − F
t

s
F

R
3

Kf
b

e, k(Xu, vg), Qu(dvg) du2 , Q8 (4.6)
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in which Kf
b

e, k is obtained as Kf
b

e, c but where |z|c has been replaced by
|z|c N k. In this case and since >p

0 b e(h) dh <+., Kf
b

e, k also writes

Kf
b

e, k(v, vg )

=F
2p

0
F

p

0
(f(v+a(v, vg, h, j)) − f(v)) kk(v − vg) b e(h) dh dj

=F
2p

0
F

p

0
F

kH

0
(f(v+a(v, vg, h, j) 1{x [ kk(v − v*)}) − f(v)) dx b e(h) dh dj.

Firstly,

O(Fke)2, pke, nP=E((Fke(mke, n))2)

=E 111
n

C
n

i=1
(Mke, if

t − Mke, if
s ) G(Vke, in

s1
,..., Vke, in

sp
)2

22

=
1
n

E(((Mke, 1f
t − Mke, 1f

s ) G(Vke, 1n
s1

,..., Vke, 1n
sp

))2)

+
n − 1

n
E((Mke, 1f

t − Mke, 1f
s )(Mke, 2f

t − Mke, 2f
s )

× G(Vke, 1n
s1

,..., Vke, 1n
sp

) G(Vke, 2n
s1

,..., Vke, 2n
sp

)) (4.7)

where Mke, if is the martingale defined by

Mke, if
t =f(Vke, in

t ) − f(V i
0) −

1
n − 1

C
n

j=1
F

t

0
F

kH

0
F

2p

0
F

p

0

(f(Vke, in
s +a(Vke, in

s , Vke, jn
s , h, j) 1{x [ kk(V ke, in

s − V ke, jn
s )})

− f(Vke, in
s )) b e(h) dh dj dx ds

and with Doob–Meyer process given by

OMke, ifPt=
1

n − 1
C
n

j=1
F

t

0
F

kH

0
F

2p

0
F

p

0

(f(Vke, in
s +a(Vke, in

s , Vke, jn
s , h, j) 1{x [ kk(V ke, in

s − V ke, jn
s )})

− f(Vke, in
s ))2 b e(h) dh dj dx ds
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and for i ] j,

OMke, if, Mke, jfPt

=
1

n − 1
F

t

0
F

kH

0
F

2p

0
F

p

0

(f(Vke, in
s +a(Vke, in

s , Vke, jn
s , h, j) 1{x [ kk(V ke, in

s − V ke, jn
s )} − f(Vke, in

s ))

× (f(Vke, jn
s +a(Vke, jn

s , Vke, in
s , h, j) 1{x [ kk(V ke, in

s − V ke, jn
s )} − f(Vke, jn

s ))

× b e(h) dh dj dx ds. (4.8)

The right terms in (4.7) go to 0 thanks to the expression of the Doob–
Meyer process, to the uniform integrability proved in (4.4). Moreover the
convergence is uniform on k, e. Hence

lim
n

O|Fke|, pke, nP=0, uniformly in k, e.

Otherwise, the quantity O|F − Fke|, pke, nP=E(|F − Fke| (mke, n)) can be written
in an analogous form to the right term of (3.11) replacing Q e by mke, n. Its
study is thus controled in a similar way than the term E1 in Section 3.3.
Then it converges to 0 uniformly in k and n as e tends to 0.

Finally, we have proved that

O|F|, p.P=0.

Thus, F(Q) is p.-a.s. equal to 0, for every s, t, s1,..., sp outside of the
countable set DQ. It is sufficient to assure that p.-a.s., Q is a solution of the
nonlinear martingale problem (LMP). Let us remark to conclude that each
solution Q of the limiting martingale problem is in fact a probability
measure on CT. This remark allows us to deduce immediately the following
corollary. L

Corollary 4.2. Assume Q0 ¥ P4(R3) and consider a sequence mkrer, nr

which converges to Q. Then the probability measure-valued process
(mkrer, nr

t )t \ 0 converges in probability to the flow (Qt)t \ 0 in the space
D([0, T], P(R3)) endowed with the uniform topology.

5. THE MONTE-CARLO ALGORITHM

We deduce from the above study an algorithm associated with the
binary mean-field interacting particle system, which enables to observe the
transition from the Boltzmann equations to the Landau equation.
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At our knowledge, no effective numerical resolution of the Landau
equation seen as limit of Boltzmann equations has been obtained by
deterministic methods, except in ref. 22 in which a spectral method fur-
nishes a concret way to study this limit (without numerical resolution).
Moreover, according to discussions with numericians, it seems that the
deterministic particle methods do not work for the 3D Landau equation.
There exist also for this equation some numerical Monte-Carlo algorithms,
as Takizuka and Abe (26) and Wang et al., (28) but they are inspired by the
diffusion structure of the Landau equation and do not follow the asymp-
totics of the grazing collisions, and the proofs of convergence are not
written.

From now on, the quantities h, c, k and be defining the cross-section B,
the initial distribution Q0, the terminal time T > 0 and the size n \ 2 of the
particle system are fixed. We denote by Bk, e(z, h)=kk(z) b e(h) the corre-
sponding cross-section with cutoff. Because of Theorem 4.1 and Corollary 4.2,
we simulate a particle system following (4.3), i.e., the whole path (Vn

t )t ¥ [0, T]

¥ D([0, T], (R3)n).
First of all, we assume that Vn

0 is simulated according to the initial
distribution Q é n

0 . Then, we denote by 0 < T1 < · · · < Tk the successive jump
times until T of a standard Poisson process with parameter npkH ||b e||1.

Before the first collision, the velocities do not change, so that we set
Vn

s =Vn
0 for all s < T1. Let us describe the first collision. We choose at

random a couple (i, j) of particles according a uniform law over {(p, m) ¥

{1,..., n}2; m ] p}. We choose x uniformly on the interval [0, kH], we
choose the first angle of collision j uniformly on [0, 2p] and we finally
choose the collision angle h following the law b

e(h)

||be||1
dh. Then we set

Vn, i
T1

=Vn, i
0 +a(Vn, i

0 , Vn, j
0 , h, j) 1{x [ kk(V n, i

0 − V n, j
0 )}

Vn, j
T1

=Vn, j
0 +a(Vn, j

0 , Vn, i
0 , h, j) 1{x [ kk(V n, i

0 − V n, j
0 )}

Vn, p
T1

=Vn, p
0 if p ] {i, j}

Since nothing happens between T1 and T2, we set Vn
s =Vn

T1
for all s ¥

[T1, T2[.
Iterating this method, we simulate Vn

T1
, Vn

T2
,..., Vn

Tk
, i.e., the whole path

(Vn
t )t ¥ [0, T], which was our aim.

Notice that this algorithm is very simple and takes a few lines of
program and does not require to discretize time. It furthermore conserves
momentum and kinetic energy. Let us remark that at least formally, this
algorithm can be adapted in a similar way to the Coulombian case, since
the soft potential term is cut off for the simulations.
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6. NUMERICAL RESULTS

We use the previous Monte-Carlo algorithm to estimate the fourth-
order moment of a solution of the Landau equation. By this method, one
conserves momentum and kinetic energy, and one follows the asymptotics
of grazing collisions.

We consider the cross-section Bk, e(z, h)=kk(z) b e(h) with kk(z)=
|z| N k and b e satisfying Assumptions (2.3), (3.5) and (3.6).

For each e, k, we denote by Qk, e the solution of the martingale
problem with cross-section Bk, e obtained in Theorem 2.6. We know that for
each e, k, (Qk, e) is a cluster point, as n tends to infinity, of the empirical
measure mk, e, n associated with a simulable particle system. We also know
that (Qk, e)e > 0, k \ 0 is tight and that any limiting point P is a solution of the
martingale problem (LMP) associated with the Landau equation.

At last, we define:

mk, e, n
c (t)=F

R
3

|v|4 mk, e, n
t ( dv);

mk, e
c (t)=F

R
3

|v|4 Qk, e
t ( dv) and

mc(t)=F
R

3
|v|4 Pt( dv).

We mention that there is no explicit computation of the fourth-order
moment mt for the Landau equation in our context.

6.1. The ‘‘Moderately Soft’’ Potential Case, c ¥ (−1, 0]

We fix c=−0.8 and we consider the following asymptotics

b e(h)=
1

2pe3 sin ( h

2e
)2 1e [ | h

e
| [ p

These functions satisfy Assumptions (2.3) for any e > 0 and (3.5), (3.6)
when e tends to zero. We notice that ||b e||1= 1

pe2 tan−1(e/2) and L e=
p > b e(h) sin2( h

2 ) dh converges towards L=p ln 2 as e tends to 0.
We also consider the initial distribution on R3, Q0( dv)=

1[ − 1/2; 1/2]3(v) dv.
We first estimate m−0.8(t) at time t= 1

2p
. We consider n=50000 par-

ticles.
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First of all, when we consider the mean over 100 simulations of
mk, 0.1, 50000

−0.8 ( 1
2p

), we notice that it converges very fastly in k. Hence the error
due to the spatial cutoff is small:

k 1 4 6 10 50

mk, 0.1, 50000
−0.8 ( 1

2p
) 0.09742 0.09873 0.09881 0.09878 0.09875

So we fix k=6 in all what follows.
We now study the convergence of m6, e, 50000

−0.8 ( 1
2p

) as e tends to zero.
Taking each time the mean over 100 simulations, we observe in Fig. 1. the
convergence of the fourth-order moments for the Boltzmann equation to
the one for the Landau equation when e becomes small.

One can notice that m6, e, 50000
−0.8 ( 1

2p
) tends to 0.0988, with a speed of con-

vergence in |m6, e, 50000
−0.8 ( 1

2p
) − 0.0988| 4 0.015 f e2, when e tends to zero. Hence,

the choice e=0.1 seems reasonable to describe the Landau behaviour.
Our algorithm describes precisely the convergence of the Boltzmann

equation to the Landau equation. But we take into account all small
jumps, then the duration of computation is not optimal. For example,
when e=0.1 and k=6, there is arround 25.106 shocks of particles on the
time interval [0, 1

2p
].

1.0 2.1 3.2 4.3 5.4 6.5 7.6 8.7 9.8 10.9 12.0
0.0840

0.0856

0.0872

0.0888

0.0904

0.0920

0.0936

0.0952

0.0968

0.0984

0.1000

×

×

×

×

×

×

×

×
×

×
× × × × ×

1/epsilon

fourth-order moment

Fig. 1. Evolution in 1/e of m6, e, 50000
−0.8 ( 1

2p).
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Fig. 2. Evolution of m6, 0.1, n
−0.8 ( 1

2p) as n Q +.. Continuous lines: 0.0988 ± 0.2/`n; points:
m6, 0.1, n

−0.8 ( 1
2p ).

Let us now study the speed of convergence of m6, 0.1, n
−0.8 ( 1

2p
) to m6, 0.1

−0.8 ( 1
2p

),
when n tends to infinity. We obtain the Fig. 2.

The speed of convergence is in 1/`n. It seems that a central limit
theorem holds. (A proof of a similar central limit theorem has been
obtained by Fournier and Méléard (10) from 2D Boltzmann equations
without cutoff and for Maxwell molecules.)

At last, we observe the evolution in time of the fourth-order moment.
(Our method conserves the energy, then the two-order moment is constant
in time.) We fix again k=6 and e=0.1 and we observe in Fig. 3. the
moments of order 4 for some values of t ¥ [0, 1].

6.2. The Coulombian Case

Our theorical results are satisfied for a potential c ¥ (−1, 0], but our
numerical approach works in the interesting case of Coulomb molecules.

We now consider our algorithm with c=−3 and with the same initial
condition as in Buet et al. (2) We consider n=50000 particles and each value
is obtained taking the mean over 100 simulations. We take as initial
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0790

0.0818

0.0846

0.0874

0.0902

0.0930

0.0958

0.0986

0.1014

0.1042

0.1070

×

×

×

×

×

×

×
×

×
×

× × × × ×

time

fourth-order moment

Fig. 3. Evolution in time of m6, 0.1, 50000
−0.8 (t).

condition the measure Q0 with the following density with respect to the
Lebesgue measure:

f(0, v)=1
2 (MN, v01, vth

+MN, v02, vth
)

where MN, u, vth
is the Maxwellian function on R3

MN, u, vth
(v)=

N

(2pv2
th)3/2 exp 1 −

|v − u|2

2v2
th

2

with N=5, vth=0.45, v01=(2, 3, 3) and v02=(4, 3, 3).
Moreover we take the cross-sections defined in ref. 4, with

b e(h)=
1

|log e|
cos(h/2)
sin3(h/2)

Ih \ e

In this situation, L e converges towards L=1
2 as e tends to 0.

Since the initial datum is not a probability measure, (its mass is equal
to 5), we adapt the results obtained by Méléard in ref. 21 and we consider
the algorithm with the empirical measure mk, e, n=5

n ;n
i=1 dV ke, in and the jump

times of a standard Poisson process with parameter 5npk ||be||1
2 .
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0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60
4380

4382

4384

4386

4388

4390

4392

4394

4396

4398

4400

×

×
× ×

× × ×
× × × ×

×

×

time

fourth-order moment

Fig. 4. Evolution in time of m6, 0.2, 50000
−3 (t).

We first estimate the fourth-order moment m−3(t) at time t=0.06.
As for the previous simulations, the algorithm converges very fastly

in k. Then we fix again k=6.
We observe that the convergence in e of the fourth-order moment of

the Boltzmann equation to the one of the Landau equation is very fast:

e 0.9 0.6 0.2 0.1 0.08

m6, e, 50000
−3 (0.06) 4389.5 4389.1 4389.9 4388.9 4388.5

The choice of e=0.2 seems to be reasonable to describe the Landau
moment.

At last, we fix k=6 and e=0.2 and we observe in Fig. 4. the evolu-
tion in time of the fourth-order moment. We find the same evolution as the
one described in ref. 2.
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